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Heat transport by turbulent convection 

By LOUIS N. HOWARD 
Department of Mathematics, Massachusetts Institute of Technology 

(Received 5 April 1963) 

Upper bounds for the heat flux through a horizontally infinite layer of fluid 
heated from below are obtained by maximizing the heat flux subject to (a) two 
integral constraints, the ‘power integrals ’, derived from the equations of motion, 
and (b )  the continuity equation. This variational problem is solved completely, 
for all values of the Rayleigh number R, when only the constraints (a) are im- 
posed, and it is thus shown that the Nusselt number N for any statistically 
steady convective motion cannot exceed a certain value N,(R), which for large 
R is approximately (3R/64)4. When (b )  is included as a constraint, the variational 
problem is solved for large R, under the additional hypothesis that the solution 
has a single horizontal wave number; the associated upper bound on the Nusselt 
number is (R/248)Q, The mean properties of this maximizing ‘flow ’, in particular 
the mean temperature and mean square temperature deviation fields, are found 
to resemble the mean properties of the real flow observed by Townsend; the 
results thus tend to support Malkus’s hypothesis that turbulent convection 
maximizes heat flux. 

1. Introduction 
This paper is about the transport of heat by thermal convection in a hori- 

zontally infinite layer of fluid heated from below. As a mathematical model we 
use the equations of the Boussinesq approximation, for which a convenient 
reference is Chandrasekhar (1961), $ 8 ;  more detailed discussion is given by 
Mihaljan (1960) and by Spiegel & Veronis (1960). The solutions of the Boussinesq 
equations which are relevant to the physical problem are those which, besides 
satisfying appropriate boundary conditions on the faces of the fluid layer, are 
statistically steady in time and statistically homogeneous in the horizontal planes 
x = const. In  particular we require the existence and constancy in time of 
horizontal averages of the various functions describing the flow, and of their 
products as well, and the vanishing of the horizontal averages of the horizontal 
velocity components; the horizontal average of the vertical velocity component 
is then zero also, as a consequence of the continuity equation. For brevity, these 
requirements of statistical steadiness and the existence of horizontal averages, 
etc., will be called the ‘requirements of homogeneity’. (Homogeneity in time 
as well as in horizontal planes is to be understood in this expression.) 

Below the critical Rayleigh number, the only solution of the Boussinesq 
equations satisfying the boundary conditions and the requirements of homo- 
geneity is the purely conductive one, with no fluid motion. Above the critical 
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Rayleigh number this solution still exists, but is not unique; it is furthermore 
unstable. Experimentally, for Rayleigh numbers in excess of critical, but not 
too much so, a steady cellular convection occurs, and corresponding steady 
solutions of the Boussinesq equations have been obtained by Malkus & Veronis 
(1958) and Gor’kov (1958); these solutions exist for a finite range of horizontal 
cell sizes, but apparently only one cell size and cell pattern occurs in a given 
experimental situation, presumably for reasons of stability. There seems to be 
no strong reason to doubt the mathematical existence of such steady convective 
flows for all Rayleigh numbers greater than critical, but experimentally, steady 
convection is replaced by an unsteady motion when the Rayleigh number is 
increased to about ten times critical, and we must expect that all steady con- 
vective solutions of the Boussinesq equations become unstable for sufficiently 
high Rayleigh numbers. Malkus (1954a) has reported experiments which 
strongly suggest a sequence of successive instabilities, with associated qualitative 
changes in the nature of the flow, as the Rayleigh number is further increased 
leading ultimately to what can only be described as turbulence. It thus appears 
likely that even if we were able to determine all solutions of the Boussinesq 
equations and the boundary conditions and requirements of homogeneity, we 
should find, in the case of large Rayleigh number, a very considerable lack of 
uniqueness. This in itself would present no great problem if the average pro- 
perties of all these solutions were the same, but this is certainly not the case 
with respect to the purely conductive and the steady’ convective solutions, for 
example, and seems equally unlikely when various unsteady solutions are also 
possible. In  principle, the determination of which solution should be expected 
to be experimentally realized might be based on some sort of stability con- 
sideration (though it is difficult to formulate this idea precisely), but this seems 
impossible to carry through in practice. Malkus (19543) suggested, as a physical 
hypothesis, to be tested by comparison of its consequences with experiment, 
that the solution actually realized is that one (or those) which leads to the largest 
heat flux across the layer, the temperature difference being prescribed. While 
this poses a problem easier than the study of the stability of all solutions, our 
inability even to determine the solutions, in the case of large Rayleigh number, 
makes it practically impossible to carry through even this approach. To produce 
a simpler problem, Malkus suggested a strengthened form of his hypothesis: 
the heat transport which actually occurs for large Rayleigh number is not only 
the maximum among all solutions of the Boussinesq equations, but may in 
fact be almost as large as the maximum obtainable when fields of velocity and 
temperature are admitted which no longer satisfy the Boussinesq equations, but 
are restricted only by the continuity equation, the boundary conditions, the 
requirements of homogeneity, and the two simplest integral consequences of the 
Boussinesq equations, generally called the ‘power integrals ’. 

Now whether or not Malkus’s hypothesis (in either form) is verified in reality, 
it  is clear that the maximum heat transport consistent with the power integrals, 
the continuity equation, the boundary conditions, and the requirements of 
homogeneity, will (if it is finite) give an upper bound on the heat transport which 
actually occurs, and is consequently by no means without interest. If it  should 
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turn out that this upper bound does not greatly exceed the actual heat transport, 
we may infer that Malkus’s hypothesis does have some correspondence with 
physical reality) and we may perhaps acquire greater confidence in the use of 
similar methods for the study of other problems in turbulence. 

The basic problem of this paper is the determination of this upper bound on 
the heat transport) a problem mathematically of a most familiar type in varia- 
tional calculus: maximize a functional defined by a certain integral, subject to 
some integral constraints. The continuity equation is really a differential equa- 
tion constraint, of course, but one of a very simple form and one which leaves 
the class of competitors in the variational problem still very large. The problem 
posed by Malkus’s first hypothesis, maximum heat transport subject to the full 
set of Boussinesq equations) the boundary conditions and the requirements of 
homogeneity, would (if solved) also give an upper bound on any actually occur- 
ring heat flux, in fact an upper bound which could not be worse and might well 
be better than the previous one. But the class of competitors is here not easy 
to describe precisely because we do not know all solutions of the Boussinesq 
equations, and the mathematical problem is therefore more difficult. On the 
other hand, from the physical point of view, the meaning of the hypothesis of 
maximum heat transport subject to the power integrals, etc., but not the Bous- 
sinesq equations, is somewhat obscure if we try to carry it any further than the 
simple statement that it gives an upper bound, because this upper bound may 
well only be achieved by ‘flows’ which do not satisfy the Boussinesq equations 
and are not really physical flows a t  all. I n  contrast to this, the original form 
of the hypothesis, while possibly incorrect) does at least make sense physically: 
the maximizing flow could be the real flow. However, it is possible to  regard the 
solution of the problem of maximum heat transport subject to the power in- 
tegrals, etc., as a step in a sequence of approximations to the determination of 
the maximum heat transport subject to the Boussinesq equations: it is not un- 
reasonable to  suppose that the successive imposition of more and more integral 
consequences of the Boussinesq equations as constraints on the problem of 
maximum heat transport will give a sequence of problems whose solutions con- 
verge in some useful sense to the solution of the problem with the full Boussinesq 
equations as constraints. From this point of view it appears that the problem 
posed above is not the natural first step. We might, for example, start by dropping 
the requirement of continuity, or use only one of the power integrals. It is not 
difficult to show that if only one of the power integrals is retained, whether or 
not one keeps the continuity equation, then the heat transport is unbounded; 
this goes too far in trying to simplify the problem. However, if both power in- 
tegrals are retained but the continuity equation is dropped, a finite upper bound 
on the heat transport can be obtained, and this appears to be the natural first 
step in the hypothetical sequence of maximizing problems. This problem will 
be solved in $3 .  Adding the requirement of continuity then seems to be the 
natural second step, and this will be taken up and partially solved in the case of 
large Rayleigh number in $4. With the present approach, we obtain rigorous 
upper bounds on the heat transport, but we cannot expect that the maximizing 
fields of velocity and temperature will necessarily bear any close relation to 
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those which really occur. On the other hand, if the upper bound on heat transport 
is not hopelessly too large, it  would require an unreasonable amount of self- 
restraint not to compare the average properties of the maximizing fields with 
experimental observations. This will be done in $ 5 ,  together with a general 
physical discussion. 

In  his original theoretical paper 011 turbulent convection, Malkus (1954 b )  
made other physical hypotheses in addition to that of maximum heat transport, 
notably the requirement that the mean temperature gradient should be nowhere 
positive, and the hypothesis that the ‘smallest scale of motion’ is determined 
by being just neutrally stable as an infinitesimal perturbation on the mean field. 
These hypotheses will not be used here; furthermore, the present mathematical 
technique is quite different from that of Malkus, and, it is hoped, is somewhat 
more complete. The basic physical ideas of this approach are, however, entirely 
those of Malkus, and my own acquaintance with this subject and interest in 
this problem have been largely a result of the many stimulating discussions with 
him which I have enjoyed over the past several years. 

The two hypotheses, of maximum heat transport and the relation to the linear 
stability problem on the mean field, seem to be the most important physical ideas 
in Malkus’s paper. (While the requirement of a nowhere-positive mean tem- 
perature gradient seems to play a large role in Malkus’s treatment, I believe that 
this is more an artifact of the mathematical technique than an essential part of 
the physical ideas.) Townsend has suggested that it is the second of these that is 
the more fundamental, and he has shown (Townsend 1962) that some of Malkus’s 
conclusions can be derived from it alone. If the present paper is regarded as an 
‘interpretation’ of Malkus’s theory, one must take the opposite view that it is 
the idea of maximum heat transport which is more fundamental; however, I do 
not mean to assert this, and the present paper should not be regarded as such an 
‘interpretation’. It is an attempt to explore in some detail the consequences of 
a part of Malkus’s hypotheses, that part which seems to me to be most readily 
formulated as a well-defined mathematical problem and yet still retains features 
of physical interest. 

2. Mathematical formulation 
The Boussinesq equations may be written as follows: 

ul+ u . VU + p-’Vp - agTk = 1’V2U, 

TF + u .  VT* = KV~T*,  

(1) 

v . u  = 0,  ( 2 )  
(3) 

where u = (u, v, w) is the velocity vector, T* the temperature field, T the devia- 
tion of T* from its horizontal average, p the mean density, a the coefficient of 
thermal expansion, g the acceleration of gravity, 1’ and K the coefficients of 
kinematic viscosity and thermometric conductivity, p the deviation of the 
pressure from the hydrostatic pressure field corresponding to the horizontally 
averaged temperature, and k the vertical unit vector. The layer of fluid is taken 
t o  be 0 6 z 6 d, and the boundary conditions are that 

T*(O) = To, T*(d) = To-AT, ~ ( 0 )  = ~ ( d )  = 0. 
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We shall use a horizontal bar to denote the horizontal average, and brackets 
{ ) to denote the average over the layer. Thus, for instance, 

T *  = T+T",  {wT)  = 2 / o a a d z .  1 

If (1) is multiplied (inner product) by u and averaged over the layer, one 
readily finds on taking account of the boundary conditions and requirements 
of homogeneity 

where the notation I VU I = I V u  [ + I Viil + I Vw I for the viscous dissipation is 
used. This is the 'first power integral', so called because of its physical inter- 
pretation as the over-all balance between the rate of generation of energy by 
motion in the field of the buoyancy force agTk, and the rate of dissipation of 
energy by viscosity. 

(4) ag<wT) = Y([VUI2), 

If (3) is averaged horizontally one readily deduces 

d z * / d Z  = K d 2 F / d z 2 ,  

so wT - K ( d F / d z )  must be constant, and equal to and since W = 0, wT" = 

its average value. Thus 

This equation determines the mean temperature field F in terms of the 'devia- 
tions from the mean ' w and T (the mean velocity field being zero). 

The ' second power integral ' can be obtained by multiplying (3) by T ,  averaging, 
and using ( 5 ) .  The result is 

K - ~ [ ( w T ) ~ -  (a2)] + (AT /d )  ( w T )  = K {lVT12). (6) 

This relation can be given a simple physical interpretation which is most easily 
seen by a slightly different derivation. Within the framework of the Boussinesq 
approximation, the rate of generation of entropy in the fluid (as a result of heat 
conduction) is, per unit volume, ( ~ p c / T ; )  [VT*I2, where To is the (absolute) 
temperature at  z = 0 (or anywhere else in the layer, within the Boussinesq 
approximation), and c is the specific heat. The difference between the entropy 
flux out a t  the top and in at  the bottom of the layer is 

again within the Boussinesq approximation. Since we have a steady state 
these must balance 

- or 

Using (5) to eliminate from this one readily reproduces (6). Thus (6) may be 
interpreted as expressing the over-all balance between the rate of generation of 
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entropy in the layer as a consequence of heat conduction, and the difference 
between the entropy fluxes through the top and bottom surfaces which results 
from the fact that the heat fluxes are the same but the temperature is lower a t  
the top. The relation (6) is called the 'second power integral' simply by analogy 
with (4); a physically more appropriate name would be 'entropy-flux integral '. 

We now put these relations into dimensionless form by introducing d as length 
scale, AT as temperature scale and K / d  as velocity scale. The power integrals 
then become 

(7 )  

( 8 )  

R ( w T )  = (IVU12), 

{wT) + (wT)' - (Z') = { 1 V T  1 '), 
where R = agATd3/~v is the Rayleigh number and from now on all variables 
are taken to be dimensionless. The dimensionless negative mean temperature 
gradient /3 { = - (d /AT)  dF*/dz}  is given by the dimensionless form of ( 5 )  

/3 = l+{wT) -wT .  (9) 

The value of /3 on the boundaries, 1 + (wT) ,  is the dimensionless heat flux, i.e. the 
ratio of the actual heat flux to that which would occur with pure conduction. 

(10) 
This is the Nusselt number 

Note that (10) and (7 )  imply that 'maximum heat flux' is equivalent to 'maxi- 
mum viscous dissipation', AT being fixed. 

The critical Rayleigh number R, is defined as the greatest lower bound of the 
values of R for which an unstable infinitesimal perturbation of the purely con- 
ductive state exists. It is well known and easy to show that 

N = 1 +(wT) .  

the minimum being taken over all fields u, T which vanish a t  the boundaries, 
satisfy V .  u = 0, and satisfy the requirements of homogeneity. For the present 
problem R, is about 1708. It is an immediate consequence of the power integrals 
that the only solution to the Boussinesq equations, the boundary conditions, and 
the requirements of homogeneity is pure conduction, if R < R,. For suppose 
that we have a solution with u $0. Then (7 )  implies that ( w T )  =/= 0 (in fact 
(wT) > 0; thus any statistically steady homogeneous convection must transport 
more heat than pure conduction) and so R = { w T ) - ~ { I V U ~ ~ ) .  But from ( 8 )  

( w T )  = ( IVTI2) )+(WT2)- (~T) '  

= ( J V T ~ ' ) + ( ( Z - ( W T ) ) ~ )  3 {JVTI'). 

Therefore 

We can now state our basic problem. 
P 1. Given R > R,, f ind  the maximum value of N = 1 + { w T )  among all fields 

u, T that vanish at x = 0'1,  satisfy the requirements of homogeneity, have V . u = 0 ,  
and satisfy the power integral relations (7 )  and ( 8 ) .  
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While the problem can be attacked in this form, it is equivalent to another 
variational problem which is free of integral constraints, and which seems to 
be somewhat more convenient to work with. We shall first state this equivalent 
problem, deduce some preliminary results about it, and then show its equivalence 
to P1. 
I' 2 .  Given A > 0, f ind the minimum m(A) of the functional 

9~ SA(v,O) G ( O ~ ) - ~ ( ( W ~ ~ ) - ( ( W O ) ~ + A ( ~ V V / ~ ) ( ~ V H ~ ~ ) }  (O = k.v )  

among abEJields v, 19 that vanish at z = 0,1, satisfy the requirements of homogeneity, 
and sutisfy V .  v = 0. 

We note that since ( ~ 2 ) - ( w O ) 2  = ( ( w e - ( ~ O ) ) ~ ) ,  9 > 0 and that 9 is a 
homogeneous functional of degree 0. Suppose 0 < A, < A,, and let v,, O,, v,, 8, 
be minimizing functions corresponding to A, and A,. Then we have 

(A, - 4) ~ ~ z ~ z ~ - z ~ l ~ ~ z l z ~ ~ l ~ ~ 2 1 2 ~  = q v , ,  8,) -&l(VZ, 0,) 

6 9A,(V,> 8,) - = q V l >  81) = m@,) - m(A,) 

6 ~ A z ( v 1 , ~ 1 ) - ~ ~ 1 ( v 1 , 8 1 )  = (AZ-hl) ( ~ 1 ~ l ) - 2 ~ I ~ v 1 1 2 ) ~ 1 ~ ~ 1 1 2 ) .  

Dividing by A, - A, and letting A, + A, we deduce 

dm(A)/dA = ( o O ) - ~ ( I V V ~ ~ ) ( ~ V O I ~ )  2 R, > 0, 

and then using this result in the original chain of inequalities we get 

(A, - 4) (dm/dA)z 6 (43 - 4) (dmld41, 

i.e. m is an increasing, and dm/dA a decreasing, function of A. Furthermore, it  
is clear that 

= R, 11m ~- = min __-___- ( l Vvl (I V@ I? . m ( 4  
A-00 A (w@2 

and that consequently dmlclh decreases monotonically to R, as h+m. To 
establish the equivalence of P 1 and P 2 we need to know also that dm/dA (or 
m / A )  increases without limit as h + 0. While this follows a t  once from the results 
of 8 3, it can be shown directly by the following simple estimate, 

We have 
02 = ( / ;Ozdzy)2 6 /(O:dz~.J-ozdz' 6 i/018:dz', 

- 

and therefore 82 6 Z ( 8 E )  < Z(lV81". 

O 2  < Z ( l V W l 2 )  6 Z(lVVl2). 

lWHl < 2*@* < z ( l V v p ) ~  (lV8l". 

- 
Similarly, 

Thus 

Let A = (]Vv/2)*(jV81)& I ( W O ) ~ - ~ .  Then 1081 < ](oO)1 xA, and 

Thus 9 > $A-l+ hA2. As a function of A ,  the right-hand side has its minimum 
at A = (6A)- f ,  so 

(11)  m(h) 3 ($A)+. 
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This shows that m/h + co as h + 0. From these properties of m(h) it is clear that 
for any R > R, there is one and only one positive solution to the equation 
m(h) = Rh. 

The equivalence of P 1 and P 2 is embodied in the following statement: 
For R > R,, let h ( >  0 )  be the solution of m(h) = Rh. Then any maximizing 

functions u, T for  P 1 are multiples of minimizing funciions v, 8 for P 2, and the 
maximum value of N is 1 + m(h)-l. 

Proof. Because of the homogeneity of P2, we shall show that maximizing 
functions u, T are minimizing functions for 9, and then that given any mini- 
mizing functions v, 8 they can be renormalized to produce maximizing functions 
u, T.  First, suppose that u, T satisfy the requirements of P 1. Then we have 

m(h) G FA(u, T )  = ( w T ) - ~  { ( z z 2 )  - ( w T ) ~  + Rh (wT) [(wT) + ( w T ) ~  - (z2)]) 
= Rh + [{WT2) - ( w T ) ~ ]  ( w T ) - ~  ( 1  - (wT) Rh). 

Since (FT2) - ( w T ) ~  > 0 this implies 1 - (wT) Rh 2 0, and so 

(wT)  6 1/Rh = l/’m(h). 

Thus N cannot exceed 1 +m(h)-l. 
and set u = Av, T = BB with 

On the other hand, let V, 8 minimize 9, 

One easily checks that u and T satisfy the power integral relations, and so are 
competitors for P 1, and (wT) = 1/Rh. Thus u and T do maximize N ,  and being 
multiples of v, 8 of course also minimize 9. 

The estimate (11)  on m(h) already permits us to give a rough upper bound 
on N .  For, given R, we have Rh = m >, ($A)). Therefore A-l < (+)&I?$. Since 
N = 1 + l/Rh, we have 

This estimate will be improved upon in the next section. 

N 6 l+(+R):. (13) 

3. Maximum heat transport without continuity 
It is clear from the derivation of (13 )  that any sufficiently strong estimate of 

m(h) from below will give an estimate of N(R) from above. An obvious estimate 
of m(h) is obtained by minimizing the functional 9 over a larger class of fields 
v, 8, by dropping the restriction V , v = 0. When this is done, it is clear from the 
form of F that the minimum can only be attained when u = v = 0, and we may 
as well start by replacing .F by the functional 

9 ( ~ , 8 )  = (~8)-~[(W8~)-{~8)~+h(jV~~~)(~~6~~)]. ( 1 4 )  

In  the problem P2, one of the requirements of homogeneity is that 0 = 0. 
If this is retained in the problem of minimizing 9 it  can be shown that the 
minimum is not attained, though it can be arbitrarily approximated. The same 
remark applies to the boundary conditions wJ0) = w,(l) = 0 which are satisfied 
by the solution to P 2  as a consequence of the continuity equation and the 
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vanishing of the horizontal components of v on z = 0 , l .  Thus it is simplest to 
drop these conditions from the start and formulate the problem: 

P 3. Given h > 0, f ind the minimum m,(h) of the functional Y among all pairs 
of functions w ,  8 which vanish on z = 0, 1 and for which all necessary horizontal 
averages exist. 

Evidently m,(h) < m(h), and by an argument almost identical with that given 
above to show the equivalence of P 1 and P 2 one can show that P 3 is similarly 
equivalent to the problem of maximizing N subject to the power integrals, the 
boundary conditions u = T = 0 on z = 0, 1 and the requirements of homo- 
geneity (without, W = O), but without the requirement that V . u = 0. 

We shall now solve P 3 .  The complete symmetry of the problem in w and 0 
suggests that the minimum is attained with w = 8, or because of the homo- 
geneity, really with w proportional to 8. The first step is to prove this. 

The Euler equatiqns for P 3 are 

h (IV812)V%J + [(Y + 1) (w8)  -we] 8 = 0 

and h (lvw12) ow + [(Y + 1) {we) -a] = 0. (16) 

(15) 

Because of the homogeneity we may clearly normalize so that 

h{lV812) = h{IVwl2) = 1 and ( w e )  > 0. 

Supposing this done, and setting O(z) = (Y + 1) ( w e )  - w 7 ,  introduce as new 
dependent variables c = +(w + 8), r = t ( w  - 6 ) .  Then the equations become 

V%+ @g= 0, (17) 

V 2 T -  CDr = 0, (18) 

CD = A-a2+72, (19) 
where 

We wish to show that a solution of these equations with c = r = 0 on z = 0, 1 
must have r = 0. Now 

A = (Y+l)(v2-72) = (Y+l ) (wO)  > 0. 

__ 
~ a2c ~ i a 2 -  __ 
cv2c = v - - (v$ + q = -- c2- IVe12 = - CDc2 

from (17), or +d2G/dz2  = - @c2+ IVg12. (20) 

- 

az2 2 dz2 
-~ 

Similarly, using (18), we find 

Now (21) shows that T = 0, if @ 0 on [0,1], for d?2/dz = 27.r, = 0 on z = 0,1 ,  
and integration of (21) from 0 to 1 would then give a contradiction unless r = 0. 
Suppose then that CD < 0 on one or more intervals in [O, 13. Since CD > 0 a t  0 
and 1 any such interval must be interior to ( 0 , l ) .  Let @ be < 0 on (zl,z2), and 
zero at the end-points. Then at zl, 

a@ a 2  a72 0 > - = --+- 
’ dz  dz d z ’  

i.e. 
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Similarly 

Since CD < 0 on (zl, z2)  and A > 0, (19) shows that 2 > 0 on (zl, z2 )  and integration 
of ( 2 0 )  over (zl, z2)  then shows that 

- - 

We thus have 

so that d71d.z must show a strictly positive increase over any interval like (zl, z2 ) .  
On the other hand, (21) shows that d 7 / d z  cannot decrease over any interval on 
which CD 2 0, and thus if there are any intervals on which CD < 0, d?2/dz must 
have a strictly positive increase from z = 0 to 1, which contradicts the fact 
that it is zero at  both end-points. Thus there cannot be any intervals on which 
0 < 0, and the earlier argument then shows that T G 0. 

Thus in seeking the minimum of 3(u, 0) we need only consider the minimum of 

and this inequality is an equality if qi is independent of x and y. The minimum 
of 3 thus gives the minimum of g1 and consequently also of 9. P 3 has been 

P 4. For given h > 0 f ind the minimum of X among functions f ( z )  zero at z = 0 
and 1. (In Z( f ), the brackets { ) mean simply an integration over [0,1], of course.) 
P 4 is readily solved; the Euler equation is 

reduced to: 

h y )  f ”+ (&+ 1) {fZ) f - f 3 = 0, ( 2 2 )  

from which the general nature of the solution can be seen a t  once by regarding 
(22) as the equation of motion of a non-linear oscillator having a ‘soft’ spring. 
[0, 11 must just cover a half-period, or an integral number of half-periods. It is 
convenient to normalizef so that the maximum amplitude of the oscillation is 1, 
and take f ’ (0 )  > 0. The ‘energy integral’ is then 

$A ( f ’ 2 )  + +(z+ I )  < f 2 )  ( f 2  - 1) - a ( f 4  - 1) = o 
or h ( f ‘ 2 ) f ’ Z  = [(*+ l){f2)-+(1+ f2)] [l -f”. ( 2 3 )  

f ’2 = [2h { f ’2) E2]-1(1 - Icy) (1 -f”. (24) 

Let E2 = [2(&+ 1) { f 2, - 1]-l, so that ( 2 3 )  becomes 

Thus from the origin out to the first maximum off we have 

z = [ 2 h  { f ’2) it219 [( 1 - k2f2) (1  - f 2)]-3 d f .  Ĵ o’ 
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Let n be the number of half-periods in (0, l), and let B2 = 2 h ( f t 2 ) k 2 ;  we shall 
show presently that n = 1 for minimum #, as would no doubt be expected. From 
( 2 5 )  we obtain the following relations: 

1 
- 2n = B lo1 [( 1 - k y )  (1 -f”]-4 df  = BK(k),  

{ f Q )  = ZnB-l[+K(k) - i ( k 2  + 1) D(k)] .  

Now from (26) and (27) 

and from (26) and (28) 
< f 2 )  = W ! ) / K ( k )  

{ f 2 )  = 4n2K(k) [$K(k) - +(k2 + 1) D(k)] .  

h-l = (2k2/B2) { f ’ 2 )  = 32n4K3[+K - Q(kz + 1)  D]. 

x = - 1 + ( 1 / 2  {f”) ( 1 + k-2) = (2k2D)-1[ ( 1 + k2) K - 2k2DI. 

(30) 

(31) 

(35) 

Then from (26)) (30) and the definition of B we get 

Similarly, from (29) and the definition of k we find 

(31) and (32) together give a parametric representation of & = m,(h). Note 
that this relation has the form Z = P(n4h) where P is independent of n. Since 
P is easily seen to be monotone increasing, the minimum Z for a fixed h is given 
by n = 1, as anticipated. h -+ O+ corresponds to k --f 1-, and h -+ 00 to k + O+. 
From the known properties of the complete elliptic integrals K and D one can 
easily show that for small h we have 

m, N ( yh) f  ( A  --f 0) 

and for large A, m, N 7r4h ( A  --f co). 

(33) 

(34) 

The maximum Nusselt number N, permitted by the power integrals but 
without the continuity equation is l+[m,(h)]-l, where h is related to R by 
m,(h) = Rh. From the above results a parametric representation of N, = N,(R) 
can be obtained and is 

R = (16K3/3D) [ (1+  k2)  K -  2k2D] [ZK- (1 + k 2 )  D], (35) 

N, = (1  + k2) K[(  1 + k2) K - 2k2DI-1. (36) 

For large R this is Nl N (2zR)Q. (37) 

As k --f 0, N, --f 1 and R + 7r4, which in the present case of neglect of the con- 
tinuity equation plays the role of R,; N, = 1 for R < n4, and then increases above 
1 as R goes above 7r4. A graph of N,(R) is shown in figure 1. 



416 Louis N .  Howard 

While (35) and (36) give a complete solution of I’ 4, and so of P 3, it is of interest 
to note that in the case of small h (or large R) the problem can be solved more 
easily by a ‘ boundary-layer’ method. Returning to equation ( 2 2 ) ,  and anti- 
cipating that for h + 0 , 8  -+ 0 andf is nearly constant except in thin boundary 
layers at  z = 0 and x = 1, normalize so that (f2) = 1. Then f + 1 except in the 
boundary layers, which have thickness e, say, and we thus have (f 1 2 )  = 0(r1). 

4 

3 

a 
0 2  
& 
3 

1 

0 
2 4 6 8 

log,, R 
FIGURE 1. Heat flux. N,, upper bound of $3 .  N, upper bound of $4. 

Skiaded region: experiments. 

Inside the boundary layers, f ”  = 0(c2); (22) then shows that we should take 
€3 = A. Considering only the boundary layer at z = 0, set z = e< and let 
lim e ( f t 2 )  = 2C2. ( 2 2 )  then gives the boundary-layer equation 

which is to be solved on 0 6 c < 00 withf(0) = 0,  f(m) = 1. We have 
C2 d2fldc2 + f - f = 0, (38) 

2C2 = lini e { f 1 2 )  = 2 
($)2dc3  

(39) 

the factor 2 on the right occurring because the contributions of both boundary 
layers must be counted in { f ’2). The first integral of (38) is 

c y a f / d c ) 2  + Q ( f 2  - 1) - $(f4 - 1) = o 
or Cdf/dC = i ( 1  -f”. (40) 
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From (40) we find 

417 

thus (I = 3-9. NOW 

Thus %’ = ( f 2 ) - 2  [{f4) - ( f 2 ) 2  + h ( f ’ 2 ) 2 ]  = PEC + E ~ ( Z C ~ / E ) ~  = 4-eC, 

and therefore m,(A) = 4(+h)* = (s%$h)i, for small A. This is of course the result 
(33) obtained previously. The functionf is easily found also, and is 

f = tanh (43*$. 

4. Maximum heat transport with continuity 
The ease with which the problem of the last section can be solved depends on 

two circumstances: first, the symmetry in w and 6’ permits the reduction from 
two dependent variables to one, and secondly, the fact that the minimum can 
be shown to occur for a function independent of x and y permits the reduction 
to a single independent variable. When the continuity equation is retained, the 
symmetry is lost and the first simplification cannot be anticipated. However, 
the structure of P 2 is such that some simplification with regard to the indepen- 
dent variables is possible, though not so much as in P 3. The Euler equations for 
P2 are obtained by setting the variation of 9 - 2 < p V . v )  equal to zero; 
p = p(x, y, x )  is a Lagrange multiplier function introduced to take account of 
the constraint V . v = 0. This gives 

h(lVv12)V28 + [(a + 1) ( W O )  -we] w = 0, (41) 

(42) A ( 1  ~ 0 1 2 )  V ~ V  + [(s + 1)  -a] ok - ( u o ) ~  v p  = 0. 

As in the linear stability problem for convection it is possible to obtain a pair 
of equations for w and 6’ by taking (41) and the z-component of the double curl 
of (42), the latter being 

h([VoI2)V4W+[(a+l)(w6‘)-(fJ6’] -+- 6’ = 0. 
- ( a 2  :;2) 

(43) 

Now (41) and (43) are non-linear equations, but the non-linearity is of a specially 
simple form in that the equations do admit solutions which are eigenfunctions 
of the horizontal Laplacian A, = a2/ax2 + a2/ay2, i.e. depend on x and y only 
through a factor of (essentially) the form sina,x sina2y. Now suppose we find 
a solution of this form, corresponding to a particular eigenvalue -a2 of A, 
(u = [ u ~ + a ~ ] ~  is the total horizontal wave-number); since the Euler equations 
are satisfied, any small variation about this solution (and this variation need 
not have horizontal wave-number a, or any single wave-number) must give, 
to first order, zero variation in 9. However, such a solution might not give a 
minimum of 9; we might consider minimizing 9 by restricting the competition 

Fluid Mech. 17 27 
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to functions of wave-number a, and it is easy to see that the solution of this 
problem would be a solution of the Euler equations for the full problem, but 
since presumably the minimum of 9 among functions of horizontal wave- 
number a is dependent on the value of a chosen, most of these could not be 
minima of 9 among all functions. Note that a small change in a does not give 
a small change in the functions uniformly over the (x,y)-plane, even though it 
presumably corresponds to a small change in the vertical dependence of the 
functions which minimize for fixed a. Thus the first derivative of this minimum 
9 with respect to a need not be zero, though the Euler equations are satisfied. 
But if we choose that value of a (presumably unique) which gives the least 
minimum of 9- among functions of fixed horizontal wave-number, we shall 
have a plausible candidate for the absolute minimum of 9. Unfortunately this 
is really only the minimum of 9 among functions with a single, but unspecified, 
horizontal wave-number, and it is conceivable that there might be a lower 
minimum achieved by functions which consist of a mixture of different hori- 
zontal wave-numbers. This latter possibility seems unlikely to me, but I have 
not been able to prove that it does not occur. Lacking such a proof, and having 
been unable to develop effective methods for attacking the problem when a 
mixture of different horizontal wave-numbers are present, we must proceed on 
the basis of the conjecture that the minimum 9 is achieved for functions with 
a single horizontal wave-number. Thus we shall actually only solve P 2 subject 
to  this additional restriction. If the conjecture is wrong, we shall not have 
obtained the true minimum; nevertheless, we shall in any case have estimates 
on the degree of success which the present general approach can have. The method 
of maximizing heat transport subject to the power integrals and continuity 
cannot limit the Nusselt number any more strongly than the limit given by the 
results of the present section, but i t  certainly limits it at least as strongly as the 
limit obtained in Q 3. It is not implied here of course that the real flow has only 
a single horizontal wave-number; the Boussinesq equations would not permit 
that. It is only the solution to the mathematical problem P 1 or P 2 that is con- 
jectured to be of this type, and in fact all that is needed is that among those 
fields which minimize 9 there should be one with a single horizontal wave- 
number. 

Since we wish to formulate the problem entirely in terms of w and 8, we must 
express (/Vv12) in terms of w. Now if w is given, the horizontal components 
p, v of v are not uniquely determined by V . v = 0, nor in fact is (1 V v  [ ”>; however, 
given w and the assumption that only one horizontal wave-number is present, 
there is a unique minimum value of { [ VvI2) and this is of course all that is needed. 
I n  fact we have (letting V, be the horizontal gradient operator): 

(lVVl2) = (Ivw12)+(lviu12>+(Ivv12) 
= (wX> 4- (I V1w I?  + ( I u 3  + {I V l P  1‘9 + <v;> + <I v, v(”. 

(WfZ> = { (Pm + Vyz)9 = (P;, + &,> + (VfZ + Vf,) 

Now from the continuity equation, w, = - p, - vy, so 

- ( (Pw - v,,)2) + 2 <PL,V,dZ> - 2 <IUYZVZZ>. 
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On using the horizontal homogeneity, the last two terms are seen to cancel, and 
{piz +,&,) = - (pu,V2,,uu,) = u2{&; similarly {vix + vf,) = u2 {v;). Thus 

(PE) + (VZ) = a2 (wfJ + a-2 {a;), 
where !J is the vertical component of the vorticity of the horizontal part of v. 
Also 

<lV,Pl + (lV1 = ( P i  +P; + v; + v;) 
= ( ( 4 %  + V , l 2 )  + ((P, - V d 2 )  - 2 {Px v,) + 2 (P, VZ). 

Again, the last two terms cancel, and from the continuity equation we find 
{ I  Vlp I 2, + {I V, v I 2, = {o~f )  + { Q2). Combining these results we get, since 

( IV ,W]~)  = -(wV2,w) = a2(w2), 

{ pvp)  = (u-2w:, + 2 4  + U 2 d )  + (u-"; + P). 

Thus the minimum (IVv12) for a prescribed w is attained when the horizontal 
part of the flow has no vertical component of vorticity, and it is easily seen that 
this condition can always be realized for any w ;  for instance, if 

w = 2w(z)sinu,x sina,y 

v = { (1 - k)/u2} w f  ( z )  sin u,x cos u2 y, 

we choose ,u = {( 1 + k)/ul}  w' (z )  cos u,x sin u2y, 

with k(u2, + ui) = u2, - ui. We may thus simply take 

and leave ,LL and v 
and when they are 

We now take 

{ p p )  = (u-2W;a+ 2w; + U W )  (44) 

out of consideration, remembering only to satisfy !2 = 0 if 
ultimately determined. 

(45) 

(46) 

0 = w ( z )  $k, y), 
6 = 6'k) &x, y), 

where $ is some eigenfunction of the horizontal Laplacian with mean-square 
value 1, for instance, #J = 2 sin a,x sin u,y, u2, + a; = u2. It is clear that the same 
Q should be used for 6' as for w ,  for any part of r3 which is horizontally uncorrelated 
with w will make no contribution to w0,  but will increase {IV6'12). Our problem 
is now to minimize the functional 

where w and 0 are from now on functions of z alone, and the minimum is to be 
sought among functions satisfying w = w' = 0 = 0 on z = 0, 1; we must also 
choose a appropriately, so as to minimize 9- 

Even in this simplified form, this is a difficult problem, and we shall attack it 
only in the case of small h (large R), making use of a boundary-layer method 
similar to that used at the end of $3 .  In  the previous case, {u-~w"~ + 2wf2 + uzw2) 
was replaced by (wf2+u2w2) and u = 0 was obviously optimal. In  the present 
case this is not so; continuity prevents the use of very long wavelengths, and the 
problem of determining the correct boundary-layer thickness is complicated 
by the need to determine u(A) simultaneously. 

27-2 
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It is natural to start by normalizing w and 8 so that (we)  = 1 and so that w 
and 0 -+ 1 away from the boundary, just as we did in 8 3. It is clear from the form 
of F ( see  (47)), that to minimize F we shall need to have we, which is zero at 
z = 0,  grow rapidly to the value 1, the rapidity of this growth being restrained 
by the need to prevent the dissipation integrals from being too large. However. 
because of the lack of symmetry, we must not expect w and 0 necessarily to 
grow in the same way; indeed the higher derivatives occurring in thew dissipation 
integral suggest that it may be preferable to have w vary rather slowly, and allow 
0 to overshoot its limiting value 1 so as to achieve 00 z 1 before w has increased 
much, 00 thereafter remaining nearly 1 as w continues to increase to the value 1 
far from the boundary. The increase in (lV012) produced by this excessive 
variation in 0 may be more than offset by the smaller value of ( l V ~ 1 ~ )  which it 
permits, without increasing ( ( w 0  - 1)2). If this should be the case, we may anti- 
cipate that 0 may be larger than O( 1) (in A )  inside the region in which w 0  differs 
appreciably from 1 , which we shall call the ‘boundary layer ’, though as has been 
suggested this is not necessarily the ‘boundary layer’ in w and 0 separately, 
but only in their product. To allow for this possibility, we shall set 

w = wlhP,  0 = 0,h-p, z = <Ar, a2 = bzh-q, 

supposing that b is of order 1 and w1 and 8, are of order 1 inside the boundary 
layer. With these variables, and anticipating that despite the possible large peak 
of 0 in the boundarylayer we shall still have {w2)  = (02) = 1 (within the boundary- 
layer approximation) we find for F, keeping in mind that there is also a boundary 
layer at z = 1, 

We must now choose the exponents p, q, r so as to minimize 9 for small A ,  
i.e. we must maximize the minimum exponent of h which occurs in 9. These 
exponents are : 

r ,  1+q-4r,  1-2r,  1 -2p-r-q ,  1+2p-3r7  1-q+2p-r ,  1-2q. 

Let e be the minimum exponent. Then, among others, the following inequalities 

(49) 
must hold: 

r 3 e,  

1 + q - 4 r  2 e, 

1-2q 3 e .  

Multiplying (49) by 8, (50) by 2, and adding to (51) we get 3 3 Ile ,  so e < +i in 
any case. Suppose e = &. Then by adding 4 times (49) to (50) and using (51) 
we get Similarly, from (49) 
and (50) we get 

so r = a. From the fourth and fifth of the original exponents one then finds 

= 5e - 1 < q < $(l - e) = 2- 11, hence q = A. 
_ _  1 1  3 -  - e < r i(1-t-q-e) = 2- 117 

_ _  , , - e - 1 + 3 r d 2 p < l - r - q - e = ~ i ,  1 -  s o p = & .  If in fact we s e t p = & ,  



Heat transport by turbulent convection 42 1 

q = &, r = i3i we find that all the orignal exponents take the maximum possible 
value A, except the third and sixth, which become A. Thus the maximum 
3i can be obtained, and in only one way. With the above choice of exponents 
we obtain .F = O(hA) ,  and setting 9- = 9,hi"i we get, within the boundary 
layer approximation, 

F1 is to be minimized by choice of b and the functions 8, and wl, subject to 
the boundary conditions 

O, (O)  = W i ( 0 )  = el(()) = 0, 

8,-+0, w,8,-+ 1 as c+co. 

Varying wl, O,, and b2 we find the following equations which must be satisfied 
for a minimum 

b-2[2 [om0;2dc+b2]d$- (1-w18,)O1 = 0, (53)  

[ 2bk2 lom wi2d< + b2] 3 + ( 1  - o 1  8,) W ,  = 0, 

From (53) and (54)  we obtain 

Putting these in ( 5 5 )  we find that 

214 + b2 + ( 2 , ~  + b2) ( - 2pb-2 + I )  2(2p + b2) ( 1  - /bb-2) = 0 

and thus p = b2. Using this in (53)  and (54)  we get 

3(d4wI/dc4) - ( 1  - WIOl) 8, = 0,  (56 )  

3b2(~?~0, /d{~)  + ( 1  - ~ ~ 0 , )  w1 = 0. ( 5 7 )  

Setting W ,  = (3b4)6 Q, 8, = (3b4)-*0, 6 = (3b))5,  ( 5 8 )  

(56) and (57) become 
d4Q/d64 - ( 1  - no) 0 = 0, 

d20/dp+ ( 1  - no) L2 = 0. 

These equations, with the boundary conditions Q(0) = Q'(0) = 0 = O(O), 
0 -+ 0 and Q20 -+ 1 as 6 -+ 00, determine L2 and 0, without requiring a knowledge 
of b. However since 
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once 0 is known we can determine b 

It is easy to see from (59) and (60 )  that 

Also, (59 )  and (60 )  have the following first integral 

from which follows : 
0 ' 2  - 2Q'Q2" + Q"2 = (1 - Q@)2, (62) 

Using (58), the terms in Sl (see (52)) can be expressed in terms of b and these 
integrals, and so in terms of b alone. This gives 

Fl = 33b4. (63 )  

It is of interest to note that (59) and (60 )  are the Euler equations characterizing 
the minimum of the functional 

(with the same boundary conditions as before) and that the minimum value cr 
of 9 is 3*bY. This gives a simple way of estimating b by using trial functions for 
Q and 0 in the integral (64 ) .  

With the minimum value (63 )  for S1 we have determined the minimum m(h) 
for 9, in the case of small h 

m(h) = 33b4hi3-. (65) 

R = 33b4h-R, = b Y ( R / 3 3 ) - Y .  ( 6 6 )  

The relation between h and R being m(h) = Rh we have 

Within the boundary-layer approximation, the Nusselt number is 

thus 

where cr = 3*bL3& is the minimum of the functional 9 of (64 ) .  The functions 
W ( Z ) ,  T(z) ,  etc., can now be expressed in terms of Q(<) and a([) by tracing back 
through the various renormalizations. The results are 

W ( Z )  = d ( R / 3 3 ) *  Q([), 

T(2) = ( l l c r ) - l O ( [ ) ,  

P(z) = A d ( R / 3 3 ) 8  [l - QO], 
z = & ( R / 3 3 ) f & - ,  

CG = (R/33)* .  
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This completes the boundary-layer solution of the problem, except for the 
numericd determination of b (or cr) and the functions Q and 0. Before presenting 
the numerical results we return briefly to the consideration of m(h) for large A. 
It was shown in § 2 that for large A, m(h) N Rch, and so that X ( R )  is reduced to 1 
as R + R,‘. It is not difficult to estimate m(h) a little more precisely, and so 
obtain dN/dRI,=,c+. For the minimizing functions we have 

h-l[m(h) - R,h] = h-l(~3)-2 [(a2) - {wB)7 

+ [ < w W 2  <I VVI 2> <I VB 1 2 )  - RCI. (73 1 
For h-l+ 0 the minimizing functions differ from their limiting values by 

terms of order A-l, but the second term on the right of (73) is zero to a higher 
order, because of the variational definition of R,. Thus if wo and 0, are minimizing 
functions for h + co (namely, proportional to the solution functions w and T 
of the linear stability problem) we have 

- 
h-l[m(h) - R,h] = A-l (woBo)-2 [ ( w o B ~ )  - ( ~ ~ f j ~ ) - ~ ]  + o(h-l) (74) 

= Jh-l+o(A-l), say. 

Thus for large A, m(h) N R,h + J ,  and this gives, for R slightly greater than R,, 

N N 1 + J-l(R - R,)/Rc. (75) 

The determination of J requires a knowledge o f  oo and Bo, and as solution func- 
tions for the linear stability problem they have been computed for the present 
case of rigid boundaries, by Pellew & Southwell (1940) and others; a convenient 
reference is Chandrasekhar (1961), Ch. 11, table 11. Chandrasekhar has in fact 
given (1961, Appendix I) the values of the integrals needed, and we find 
J z 0.6919. In  (67) and (75) we have the asymptotic behaviour at the two ends 
of  the N = N(R) curve. A preliminary value of the constant cr in (67) can be 
obtained by using trial functions in (64); a convenient choice is 

GJ = ~ ( c t ) - B  (1 -e-@), Q = A-l(ciJB (1 -e - (c t )g ) ,  

When A and c are adjusted to minimize 9, one finds 0.35 for an upper estimate 
on CT. The numerical calculation to be mentioned in the next section gives 

z 0.337, and for the upper bound (67) on the Nusselt number, for large Ray- 
leigh number, this corresponds to N z (R/248)Q. Figure 1 shows the asymptotic 
forms (67) and ( 7 5 ) ,  as well as the upper bound Nl(R) obtained in 3 3. The experi- 
mental data show a certain amount of scatter, but seem to lie in the shaded 
region shown in figure 1. In  drawing this shaded region, account has been taken 
of the experiments of Silveston and Mull & Reiher (summarized in Chandra- 
sekhar’s book 1961, 5 18), of Malkus (1954b), and of the recent work of Globe & 
Dropkin (1959). Silveston’s rather precise experiments near R = R, give a 
value of d(logR)/d(logN) about 8 of that given by ( 7 5 ) .  At the high end of the 
experimentally studied range (about R = l o g ) ,  the upper bound (67) is about 
four times the observed Nusselt number, while the upper bound Nl obtained 
without consideration of the continuity equation is about 100 times the observed 
value. 
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5. Discussion 
The exponent in the asymptotic expression (67) for the Nusselt number 

deserves some comment, since i t  is sometimes stated that at large Rayleigh 
number the Nusselt number should vary as RS. The argument for the exponent 
-$ is briefly the following: large Rayleigh number can be achieved by making 
the plate separation d large, keeping AT fixed. For d + co, then, the heat flus 
(KAT/d)  N should become independent of d, this being the heat flux into a semi- 
infinite region from a heated lower surface. Since dimensional considerations 
show that N can depend only on R and the Prandtl number, and of these only R 
depends on d (being proportional to d3) N must vary as R) for large R to make the 
heat flux independent of d, as R + co. This argument would be conclusive if it 
were known that a statistically steady convection, with a finite heat flus, into 
a semi-infinite region exists, but this is not known; that it is not physically 
obvious is clear from the fact that a steady conduction into a semi-infinite region 
does not in fact exist. Thus N cc Rg can only be regarded as a more or less plausible 
conjecture, and it is not impossible that the real heat flux might, like the upper 
bound obtained above, vary as Rg. The difference between 8 and 3 is also suffi- 
ciently small that a definitive experimental decision between the two would require 
quite precise measurements over a wide range of very large Rayleigh numbers, 
an experimental programme with many inherent difficulties. On the whole, how- 
ever, the experiments seem in somewhat better agreement with & than #, and 
even if the exponent # is fitted to the experimental data, the proportionali’cy 
constant is less than that of the maximizing flow, as is clear from figure 1.  The 
imposition of additional constraints will of course reduce the upper bound, and 
might well alter the exponent; to continue with the programme of this paper, 
such constraints should be obtained as consequences of the equations of motion, 
but it is perhaps of some interest to note here that Malkus’s requirement of a 
non-positive mean temperature gradient (which was not derived from the 
equations of motion but suggested on the basis of somewhat dubious physical 
considerations) is not strong enough to alter the exponent. Malkus’s requirement 
is not in fact satisfied by the maximizing fields, as we shall see in detail presently, 
but it can be shown that even if it  is imposed, only the proportionality constant, 
not the exponent, can be changed. 

It has recently been suggested by Kraichnan (1962)) in connexion with his 
modified ‘mixing-length ’ investigation of turbulent convection, that at  very 
large Rayleigh numbers, and for Prandtl numbers of the order of 1 or smaller, 
the Nusselt number should vary as Rt(log R)-%, a more rapid rate of growth 
than Rg. If this is correct, then the conjecture made above in $ 4 that the maxi- 
mizing flow has (or may be taken to have) only a single horizontal wave- 
number, must be incorrect. It is only of course XI which has been rigorously 
proved to be an upper bound, and Nl does exceed Kraichnan’s value; however, 
the conjecture of $ 4 will be retained in this paper. 

The explicit determination of the functions f2 and 0 from the differential 
equations (59) and (60) seems to be rather more difficult than in the analogous 
case treated in $ 3 .  After a reasonably diligent but unsuccessful search for a 
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closed-form solution, a numerical calculation was carried out, the final com- 
putation being made by the following method: the first integral (62) together 
with the boundary conditions shows that O’Z(0) + Q”z(0) = 1, and consequently 
the solution desired is to be found among the two-parameter family of solutions 
characterized by the initial cpditions: O(0) = Q(0) = Q‘(0) = 0, O’(0) = a, 
Q”(0) = (1 - a2)*, Q”’(0) = /3. For most values of cc. and /3, such a solution diverges 
as f -+ co and the value of the functional 9 (cf. (64)) for it  is infinite. It is only 
when a certain relation between a and /3 holds that 9 is finite, and for most of 
these solutions 0 approaches a non-zero constant as 6 --f a. We wish to find that 
solution for which 0 -+ 0 at infinity. Since it is known from the use of trial 
functions that c < 0.35, the equations were integrated from f = 0,  for different 
values of a and /3, the value of the partial integral 96 being computed as the 
integration proceeded and integration being stopped as soon as $5 exceeded 
0-35. In  this way it was possible to determine with considerable accuracy the 
value of /3 for a given a for which a solution with finite 9 exists, because the 
divergent solutions soon begin to grow very rapidly. It was found possible to 
carry this integration out to about f = 5 before the accumulation of errors 
became troublesome, and the solutions for which 0 -+ constant could thus be 
determined quite accurately to about = 4. To find which of these solutions has 
0 + 0, the solutions computed as above were matched up with an asymptotic 
solution, the matching being made at  about f = 3. The asymptotic solution is 
obtained as follows: since 0 and 1 - Q0 approach zero, (59) shows that for large 
f ,  Q must be essentially a polynomial of degree at most 3; actually since Q” --f 0 
as well (to get a finite 9), I2 must approach a. linear function, say Q N .(a[ + b) .  
Using this in (60) and setting w = af + b, 6 = a0 one gets d261dw2 - w2$ = - w:  
and the solutions of this which +O at co are of the form 6 = 0,(w) + c0,(w), where 

Of the six matching conditions, one is satisfied because of the first integral (62), 
and another is also satisfied automatically because it was possible in the numerical 
integration to determine quite accurately the relation between a and /3 for those 
solutions with finite 9. The remaining four matching conditions were used to 
determine a, b,  c and a. The results of this computation are given in table 1, and 

the functions 0( f )  and Il = - (1 - no) d[, which correspond to the temperature 

deviations and the mean temperature field, are shown graphically in figure 2 .  
The minimum value v of 9 is 0.337, and for values of f larger than those given 
in table 1 a good approximation is: 

1’ 

0 1*431([ - 0.620)-1, 1 - Q@ = - 4*095(6 - 0.620)-4. 

Note that for large f 1 - Q@ is negative (which is also obvious from (60) since 
0” must be positive for large c), and that consequently the mean temperature 
gradient reverses its sign; however, where it is positive, it  is numerically much 
smaller than its absolute value at the boundary. This result is perhaps not too 
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surprising; away from the boundary the heat is transported almost entirely by 
convection, and in order to maximize heat transport one can perhaps accept a 
small adverse mean temperature gradient there, since this permits a somewhat 
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0.7 
0.8 
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0.677 

1-00 
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0.662 
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n 
0 
0.004 
0.0 17 
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0.063 
0.095 
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0.635 
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0.835 
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0.491 -0.022 
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0.461 -0.025 
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0.434 -0.026 
0.422 -0.025 
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1.177 
1.247 
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FIGURE 2.  Temperature deviation (0) and mean temperature ( I , )  

functions for the maximizing flow of $4. 

larger favourable gradient near the boundary where conduction is the primary 
mechanism of heat transport. One further point about this boundary-layer 

solution that should be mentioned is that the value of (1 - Q@) df is 5r, as 

can easily be shown from the differential equations. This means (cf. (70) and 
sum 
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(71)) that the total change in mean temperature across the two boundary layers 
given by the above formulas is 

The reason for the discrepancy between this and the correct value AT is that we 
have used only the boundary-layer solution. The ‘external flow’ part of the 
solution (and the higher-order boundary-layer corrections), which we have not 
computed, has a negligible effect within the boundary layers, but over the whole 
layer does give a small but finite contribution to the mean temperature difference. 

To what extent does the real flow resemble this maximizing ‘flow ’ ‘2 A detailed 
resemblance is of course not to be expected; for one thing because the real con- 
vection is time dependent, whereas time disappears completely from the maxi- 
mum problem, as soon as attention is restricted to the power integrals. (In- 
cidentally the Prandtl number also is not present in the power integrals, so 
upper bounds obtained from them are independent of Prandtl number; in any 
case the observed dependence on Prandtl number is very weak-cf. Globe S: 
Dropkin 1959.) On the other hand it is interesting to compare the mean pro- 
perties of the real flow with the present results, and to a certain extent this can 
be done thanks to Townsend’s (1959) experiments. Besides the ambiguities 
inherent in the non-physical character of the maximizing flow there are, however, 
also difficulties in interpreting Townsend’s experiments in the present context, 
because the experiments were designed with the idea of studying convection 
into a semi-infinite region, and there was no top on the apparatus (other than the 
laboratory ceiling). Thus it is not clear what value should be taken for d in order 
to compare with the maximizing flow. Presumably all values of d between about 
40cm (near the top of the open box containing the convection system) and 
4 or 5 m (roughly the height of the room) are equally plausible; however, while 
some finite d is required for comparison with the maximizing flow, the dependence 
on d is very weak, reflecting the fact that 6 is nearly Q. There is a similar ambiguity 
about AT; Townsend gives the difference in temperature between the heated 
lower plate and a point 40 cm above it, and this is in fact almost the same in all 
Townsend’s experiments as the difference between the plate temperature and 
the mean temperature at any point more than 3 or 4 cm up. Thus this difference 
might be taken as AT; on the other hand, if the experimental observations are 
interpreted as corresponding to the lower boundary layer in a convection between 
two parallel plates, it would be more reasonable to take this difference to be BAT. 
Suppose a rigid conducting plate held at  the measured mean temperature at 
40cm were introduced at 40cm. Would this greatly alter the measurements? 
It would certainly change the mean temperature profile, because the value at 
say 20cm should become the average of the temperatures at  the two plates, 
whereas before it was almost the same as at  40 cm, but whether or not the tem- 
perature fluctuations in the lower boundary layer would be similarly changed is 
not clear (though it seems likely). Despite these ambiguities of interpretation, 
whose resolution must await experiments with the same sort of detailed measure- 
ments as Townsend’s but with two rigid plates, some interesting comparisons 
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can be made. Perhaps the simplest is the magnitude of the temperature fluctua- 
tions. Both Townsend’s observations of (@)&, and the function T of the maxi- 
mizing flow (which are the appropriate quantities to compare) rise to a maximum 
and then decrease slowly. We shall consider the detailed comparison of these 
curves presently, but the maximum amplitude of the temperature fluctuations 
is a quantity which we can compare without having to make a decision on the 
vertical scale. With each of his three standard heat fluxes Townsend found this 
maximum amplitude to be about 0.6T8, (his notation), and in each case this is 
nearly 18 yo of Tl - T,, the difference of the plate temperature TI and the ‘refer- 
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FIGURE 3. Comparison of temperature deviation with Townsend’s experiments. 

See55. 0 , A ;  O , B ;  A , C .  

ence temperature’ T, at 40cm above the plate. The maximum of the function 
0 is 0.678, and (cf. (69)) the maximum temperature fluctuation for the maxi- 
mizing flow is AT/11c times this, or 0.183Al‘. Thus if it  is appropriate to take 
AT = Tl-T,, the real flow has the same maximum amplitude of temperature 
fluctuations as the maximizing flow. With Tl - T, = +AT, which seems the more 
appropriate interpretation) the real temperature fluctuations are about half of 
those for maximum heat transport. Townsend did not measure velocity fluctua- 
tions, but if we guess that the observed vertical velocity fluctuations would also 
be about half of those for the maximizing flow, we should expect observed heat 
fluxes about of the maximum. With any reasonable estimate of d for Townsend’s 
experiments, of the order of a metre, say, the Rayleigh number is about lo8 or 
lo9, and in this range it is in fact true that observed heat fluxes are about t of 
the maximum given here. The observed profiles of mean temperature and of 
root-mean-square temperature fluctuations have, except for the previously 
mentioned factor of 2, a considerable resemblance to the maximizing profiles. 
To illustrate this I have attempted to compare Townsend’s measurements 
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with 0 and Il. This cannot be done in a completely consistent manner, because 
of the factors of 2 and the fact that it is difficult to decide on an appropriate 
value of d. The comparison has been made as follows: A T  was taken to be twice 
the difference between the temperature at  the heated plate and the reference 
temperature 40cm above it. Townsend gives the temperatures as functions of 
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FIGURE 4. Comparison of mean temperature with Townsend’s experiments. 

See $ 5 .  0, A ;  n, B ;  A, G. 

a dimensionless variable z/zo and this must be related to 6 ;  lacking a reliable value 
of d, this was done by matching the slopes of the mean temperature profiles at 
the plate. I was able to do this reasonably accurately because during my visit 
to Cambridge Dr Towiisend very kindly loaned me his original notebook, and 
from the numerical data the slopes could be determined rather better than from 
the graphs given in the 1959 paper. Townsend’s R.M.S. temperature fluctuations, 
(@)*, should presumably correspond to ( 1 1 ~ ) - 1 A T @ ,  or 0 should be 3*71(82)6/AT; 
as already remarked, this is experimentally about + of the value computed for 
the maximizing flow and to facilitate comparison of the general shape of the 

- 
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profiles the values of 0 deduced from the measured (@)$ have been arbitrarily 
doubled in plotting. It should be noted that a similar adjustment is implied by 
the method of determining 6, since the observed heat flux is about + of the 
maximum heat flux. Figure 3 shows 0 vs 6 with points deduced in this way from 
(@)$ and z / zo  for each of Townsend's three standard heat fluxes A ,  B, C. Figure 4 
shows Il vs 6,  with similar points deduced from the measurements of mean tem- 
perature. The general shapes of the experimental and maximizing profiles are 

0 01 0.2 0.3 0.4 0.5 0.6 
- 

(82)t 
Ta8, 

FIGURE 6. Horizontal scale for Townsend's heat flux B. 
Arrows indicate the direction of increasing z/zo. 

quite similar, the most notable difference other than the factor of 2 being that 
the actual R.M.S. temperature fluctuations fall off rather more slowly with dis- 
tance from the boundary than does 0. Townsend in fact found cs")* cc ( z / z o ) - o ~  
as the best power-law representation, whereas 0 falls off as t-l. 

One other feature of the maximizing flow that can be at least roughly compared 
with experiment is the horizontal scale. Townsend measured (@)* as well as 
(@)*. If there were only one horizontal wave-number, plotting (@)+ against 
(@)$ should give a straight line. While this is not exactly so, there is a reasonably 
well-defined horizontal scale, as figure 5 shows in the case of Townsend's heat 
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flux B, and the plots in cases A and C are similar. Estimating the slope on these 
plots and taking ajax = 2-:a, all three cases give a 1.8cm-l. If we knew d,  
this could be compared with the maximizing wave-number (R/33)$ d-l, but in 
view of the uncertainty with regard to d, it seems better to computed by assuming 
the observed wave-number 1.8 em-l is equal to 

(R/33)4d-l 2 (3.lATd-l)t (c.G.s. units); 

this gives values of d of the order of 30 cm, which seems to be reasonable. d cannot 
be obtained very precisely by such a matching because it depends on the fourth 
power of the rather imprecise ‘observed’ value of a,  but in any case the actual 
horizontal scale seems to be of the same order of magnitude as that required for 
maximum heat transport. Another possible comparison would be to use the 
formulas of the maximizing flow to determine d from the observed values of AT 
and heat flux. Since #is quite close to 9 ,  however, d obtained this way is extremely 
sensitive to uncertainties in AT and the flux (d is proportional to (flux)8 (AT)ll) 
and about all that can be said is that if reasonable values for AT and d are 
selected, one obtains Rayleigh numbers of the order of lo9 and heat fluxes about 
four times Townsend’s measurements. 

These comparisons, particularly the detailed comparison of the profiles, 
should not of course be taken too seriously, partly because of the factor 2, but 
especially because in principle the maximizing ‘flow ’ is physically artificial, 
and in many details does not, and cannot, resemble the real flow at all-par- 
ticularly with respect to time dependence. Nevertheless, the fact that the mean 
properties of the real motion do exhibit a considerable similarity with those of 
the artificial flow which maximizes heat flux subject only to the overall balance 
of energy and entropy, and continuity, seems to me to lend some support to the 
hypothesis that the actual motion which occurs is, or anyway approximates, a 
solution of the Boussinesq equations which maximizes heat transport. 

The first part of this work was done during the summer of 1961 while I was 
participating in the summer programme in Geophysical Fluid Dynamics at  the 
Woods Hole Oceanographic Institution, supported by the National Science 
Foundation. It was continued and substantially completed during my visit to 
Cambridge during the following academic year, a visit made possible by the 
generous hospitality of Dr Batchelor and the other Cambridge applied mathe- 
maticians, as well as a grant from the Guggenheim foundation. Dr Swinnerton- 
Dyer kindly arranged for the preliminary computations of 0 and Q to be done at 
the Computation Laboratory a t  Cambridge. The final computations were done 
at  the Computation Laboratory of Stockholm University with the assistance of 
P. Crutzen; I am particularly indebted to Dr Pierre Welander for his hospitality 
during my visit to Stockholm in the summer of 1962. This work has also been 
partially supported by the Office of Naval Research. 
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